Radiation Processing

Basic Aspects




Radiation Chemistry: Developments

» Discovery of X-rays, Réentgen 1895
e Discovery of Radioactivity, Becquerel 1896

o Since the fifties, our understanding of radiation physics,
chemistry and biology has increased tremendously
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Radioactivity

- Consists of o, B and 1y - emissions with energies
characteristic of the emitting nucleus

0~ particles: Helium nucleus, He2* ion, emitted from the nucleus

B- particles: Fast electrons emitted from the nucleus

Y- rays:  Uncharged electromagnetic radiation emitted
from the nucleus, usually along with B-particle

Orbital electrons

Radioactive Decay: Ct=C0e'M




Different Penetration of Vacuum
UV, a, B and v
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- The difference in penetration is a result of different
probabilities of interaction of o, p, Y and vac-uv
radiation with orbital electrons of a molecule




Induced Radioactivity

» Induced radioactivity produced by nuclear
reactions of H*, D+, He=*, neutrons and

V- rays
27Al + “He?** ()—— P +n
Wp —— et + 30Si

- Neutrons are the most important initiators
of induced radioactivity




Neutron-Induced
Radioactivity

n+2H — (CH) — SHe+e (t,,~12.4y)
n + 27Al—> (3¥Al) —23Si + ¢ (t 1, ~2.3min)

n+ 113Cd — > (114Cd) — 114Cd + :Y




Some Threshold Values for Nuclear
Activation

‘H +y(223MeV)—> 'H +n
181Ta + vy (7.64 MeV) —> 39Ta +n
7Au + 7y (8.07 MeV) —> YAu +n
204Pb + vy (8.38 MeV) — > 2Pb +n
WZn +vy (9.29 MeV) = = ®Zn +n
5Cu +79 (9.91MeV) ~ = %Cu +n

(IAEA Technical Report No. 188, 1979)




Induced Radioactivity

» The energy levels permitted for use in food

irradiation are sgecifically selected to avoid any
conditions which could induce significant levels
of radioactivity in the treated commodities

* The permitted energy levels are:
X-rays (or 7y -rays) <5 MeV
Electrons <10 MeV

* For radiation processing of items other than food,
electrons or X-rays up to 10 MeV can be used as
needed, without concerns about induced

radioactivity




Induced Radioactivity vs
Electron Energy
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Natural and Induced Radioactivitgy from
Various Sources (Becker, 1979)
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 In “pure” organic polymers, induced radioactivity should
be lower than in foods; in metals it would be higher




Sources for Radiation Processing

+ Natural radioactive isotopes are not suitable for
radiation processing

 Radiation processing feasible with artificially
produced radioactive isotopes

60C0 (fy), 137CS (ty)

» Radiation processing helped by the development of
electron accelerators to produce

Electron (e’) beams, X-rays

} Metal
€ (<10MeV) » X-rays

* In electron accelera}ors one can choose the electron
energy, as required for a given application

* The mode of action of y- and X-rays is exactly the same

» The mode of action of e from accelerators and
B- particles from radioactive isotopes, is also the same
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Radioactive Decay of the Gamma-
Emitting Isotopes

80Co (Half-life 5.27y) '3’Cs(Half-life 30.2 y)

B,0.313 MeV B,0.514MeV
m?’an 0.0904 (mean 0.175),
eV), 9628 Yo 94.6%
Ni

,1.486 MeV | Y, 1.173 MeV

mean 0.62 (99.8%) 13783
MeV), 0.2% o
Ni B’1'176 Me Y, 0.662MeV
mean 0.42 (83%); e,K
Y, 1.333MeV, I(VIeV), 5.4% \ | (9%),L (2%)
100%

Y
Stable %ONi Stable 137Ba




Radioactive Decay of 13’Cs and °Co
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Interaction of Ionizing Radiation
with Matter

A Simplified Picture

- The energy transfer mechanism involves
interactions between the incident particles
or photons and orbital electrons of the
atomic/molecular constituents of a substrate




Interaction of Ionizing Radiation
With Matter

— Orbital electron ejected
as secondary electron

o, B or

==>The incident particle
or photon (with
reduced energy)

Energy Deposition Event
(for details see Klots in Ausloos, 1968)

e The probability of interaction follows the order,a.>f >y
and hence the order of their penetration in matter

¢ Energy loss per event, mainly 20-100 eV
¢ Radiolysis similar to vacuum UV photolysis




Energy Deposition

« When O and e (B ) beams or vy -rays interact with matter, the energy
is distributed heterogeneously
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« Clusters of ionization and excitation (spurs) produced in liquids by
irradiation

- Each dot represents a spur (~100 eV), a small region where energy
is absorbed producing excited and ionized species

HoO —A"wWir» HyO* + HyO* + €
RH —~w» RH*+RH*+e




A Typical Spur in Water

G(e'aq) ~5
G(-OH) ~ 6

“o3nm [€ aq ] “OH= 0.1 mol.dm™ (Av)?
[ «OH 1% 2 mol.dm-3 (Spur Core)P

Adapted from Singh and Singh, 1982. Initial concentration,
(a) averaged over total spur volume (diameter 4.6 nm); (b)
within the spur core (diameter 1.5 nm)




Distribution of Ions and Excited Molecules
in the Track of a Fast Electron

Primary track I

I Spurs <100 eV I

Short track
< 5000 eV

The quantity of energy deposited determines whether an individual
event will give rise to a spur or a larger group of ions and excited

molecules

- Blobs (100-500 eV) and short tracks (< 5000 eV) can be considered as
groups of overlapping spurs

- Delta rays are secondary electrons of energy less than 10,000 eV

-For 10 MeV ¢ : 75% spurs, 17% short and branched tracks, 8% blobs
(Spinks and Woods, 1990)




Basic Similarity of Radiolytic Effects by Different
High Energy Radiations

i Energy Substrate
ition —
epositio % T
Substrate | |ons + Excited
> » Molecules
(e.g. water, (in spurs)
organic
> |molecules) v
N W TR T R R Primary Free
106 10° 104103 102 Radical Species

Secondary Electrons with Secondary Free

Successively Radical and
Lower Energies (eV) Reactive Species

Stable Products

e Steps in Energy Deposition (Cascade Effect) Leading
to Radiation-induced Product Formation
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S0, despite different types of high-energy radiation
(cl @g‘@m pariicles or y-rays or x-rays), the actual
chemical effects are brought about by low

gy electrons (10-100 eV). That is the reason

for the similari ity of the radioclyiic effects
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Energy Absorption in Mixtures

« Components of a mixture absorb energy in proportion
to their respective electron densities

Electron density = number of orbital electrons
per unit weight

- For gamma and electron irradiation of organic
aqueous systems, a reasonable approximation is that
the components of a mixture absorb energy in
proportion to their weight

Biological System, 75% water and 25% organic
Energy absorbed, ~75% by water and
~25% by organic




o
”§
ad i

?"’“9"”“!

- Linear Energy Transfer (LET) is the rate of
energy transier from charged pariicles or
- photons to matier

s with the mass of the

«  However, this concept is of no direct
interest for food rradia ém& mm%% M@

of interest in other radiation processing

applications and in m@émmmw




Range in Average LET
Aluminum | Watey in Water
() {(mm) (ke¥ wm)

1.5 4.4 0.24
(e} 5.5 15 0.20
19.5 52 0.19

Proton : G045 0.023 44
{(H") .072 0.14 2
0.64 1.2 8.3

=lectron

0.0029 190

) 0.0077 180
Vas

(He™) 0.057 92

*at 15°0, 100 kPa : ‘

Heolium nucisus




Radiation Processing
Physical Effects

Widely Used in

« Welding

~ « Industrial Radiography
 Jon Implantation

« Gemstone Irradiation

See Woods and Pikaev (1994), for details and
references




Radiation Processing
Chemical Effects

1. Background

2. Basic Aspects

3. Formation and Reactions of Short-Lived
Reactive Species

4. Products From Typical Organic
Compounds




Irradiation, Overall Effect

Substrate —wv» Jons, Excited States,
Free Radicals

Products

- Generally, higher the yields of excited states, the lower
the overall decomposition, e.g., aromatic compounds
degrade less than aliphatic compounds




Forms of Energy Supply

(1) Heat 3
r ' >
(Pyrolysis} 3§ Bond Breakage
-0 Begins
o)1)
S
C
w
Temperature
(2) Light IP  Excitation level
(Photolysis) dependent on the

Energy—— energy of the quanta

Levels S,

Si hv
Temperature of the
Sy system generally
unchanged

- Bond breakage generally from S, or higher levels (dependent
on energy of quanta and bond dissociation energies)

Ground




High Energy Radiation
(Radiolysis)

« Singlet and triplet states

T - lonization and excitation
« Variety of bonds broken

r. °Bond dissociation energy
2 still important

T

Ty

« lonic reactions also
important




at Treatment)
sis (Irradiation)
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Energy Required { for

> W-value is the energy required for one ionization
event (one ion pair, .g., H,0* + &

« jonization mmmm (IP} is the minimum energy
mggmm {0 produce ong ion palr

m@ﬁ%@@ﬁ%ﬁf of W-values ang 1P

as We-value P

T From Swallow (1960)




Comparison of the W-value and the IP m&%
suggesis that excited molecules are formed
in addition to the ionized species, since %5%5 > [P

The difference between W
going into excitation

- 1P = Excitation Energy

Evidence for the w 1ation of both ionized sp
m@ excited species is available in literature




in general, a cation ggmgéézﬁm charge) will transfer ils charge
to a molecule whose ionization potential (IP) is lower. For
example

Cyclohexane |

Cyclohexaner (IP = 9.9 eV)

Cyclohexane* + Benzene

Cyclohexane + Benzene* (IP = 9.2 eV)

- [P Cyclohexane » 1P Benzene




@‘? %%%% §§§W%f§“§ excited si g‘%g“ and
- E%‘%@é%i states of organic molecules

-« Ag gy transfer can take pla
m@mmém@ For example

. The excited
evels of gﬂ%




Singlet and Triplet Energy Levels of
Donors and Acceptors

8
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« The singlet energy levels of c-hexane and 2-butene are

estimates (Ausloos,

1968)

« Singlet state transfers energy to lower singlet state and
triplet state only to lower triplet state




ind Breakage and Formation

and i‘ﬁ*’*‘%g?ﬁ rnergies

Generally, bond breakage requires energy and
bond formation resulls in energy release







- Free radicals are formed in radiolysis, from both ionic
reactions and from excited states. For the mm% m water,
‘Z%“i@i’ﬁ% can be g%émimé@@é as follows. |

w&éé as addi f@gm reactions with an organic substrate
e%%ﬁg |




« Water is the most studied liquid in radiation chemistry

Radiolysis of Water
EVENT
H,O
Excitation |[<10s I w1, | <10Ms|  lonization
] HOo' THO +e¢
<102 | 72 |
' |< 1073 \ Solvation
‘H+ -OH .OH + HgO*
<10%s ”' .H
< 10-53 -OH e.

H, v aq
H202 <10°Fs Noz
o

» The species present at 107s :
e'aq , *H, -OH, H202, H30+ ,02-




Transition From Inhomogeneous to Homogeneous
Distribution of Free Radicals in Liquid Water

(i) lrrad | ° ° ispurl -Low number
~1012g [ © o ) - -3 a
0 ) ofle aq 1=[OH]=0.1 mol.dm™(Av)

[OH] =2 mol.dm3 (Spur Core)P

(ii) G(eaq) | Homogeneous| [ aq]1~[-OH ]~ 10" mol.dm™3(y)°
~2.7 Distribution -3 -6
- = 10™ to10™ mol
G2('70H) (:OH, e ag H) .dm™3 (e')d

[Spur] -Very high number
° l[€°aq 1 ~[-OH}0.1 mol.dm3(Av)?
[.[OH] = 2 mol.dm™ (Spur Core)?

(iil) e Irrad
~1012 g

a. Averaged over total spur volume; b. Initial Concentration within
the spur core; c. y - Irradiation; d. e™- Irradiation




Transition From Inhomogeneous to
Homogeneous Distribution of Free Radicals
in Liquid Water

(i) Represents spur formation on energy absorption
from a single gamma photon in 1012 s or less

(ii) Shows homogeneous distribution of reactive
species on diffusion of spurs in about 107 s

(iif) Represents spur formation on energy absorption
from a single electron in 10-12 s or less. The higher
spur concentration [spur] on electron irradiation is
not drawn to scale

Singh (1991)




pPH Dependence of Yields on Radiolysis
of Water
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 The pH range of most foods lies between 2 and 8




Radiolysis of Organic Liquids

RH*

~1011g

R+ -H

T

EVENT

~10710g |

Products

RH -
o] e, [<0s]
N

RH" + e

-12
<10 sl Solvation
(RH dependent)

(esolv-)

~10"1%

Products

- Excitation longer lived and more important in organic
systems, than in water

- lonic species formed but much shorter lived than in water
- In the presence of air/O,, peroxy radicals and O,". formed




RADIOLYSIS OF ORGANIC LIQUIDS
EVENT

RH
<10 14s o \4,,4 <107'%s
4

RH* RH +e
~101s / \10 125 Solvation
(RH dependent)
'R+ H ~10%s (esolv-)
Products ~10™% \‘

Products

- Excitation longer lived and more important in organic systems,
than in water

« lonic species formed but much shorter lived than in water
- In the presence of air/O,, peroxy radicals and O, formed
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Basis for Beneficial Effect of Irradiation

S % Destruction _
]

101 10° 10' 102 103® 104 105 10 107 108

« These differential senstivities of different functional
entities to inactivation are the basis of beneficial
effects of irradiation




Irradiation
Microorganism Inactivation

* Irradiation used to control microorganism
levels (food, sewage, medical devices)

e Irradiation harmful to humans; so, exposure
of humans kept within safe limits




Radiation-Inactivation of E. coli
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E.coli cultured aerobically in broth and irradiated in
O,-saturated or No-saturated buffer (Casarett,1968)




Concluding Remarks

« Physicists, chemists and biologists have
contributed to the high level of understanding
of the basic aspects of radiation science, which
forms the foundation of radiation processing

« One of the biggest industrial applications of
radiation processing, crosslinking of
polyethylene and the heat-shrink phenomenon,
were discovered by Prof. Arthur Charlesby in
1957 when he was investigating the effects of
high energy radiation on polymers
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